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PREFACE

This study covers the analysis and experimental
investigation of the effect of a hydraulically-supported,
pivoted-shoe, journal bearing on the attenuation of noise
originating from rotor unbalance.

This work is in fulfillment of Bureau of Ships
Contract No. NObs-86914 and it has been assigned Project
Serial No. SF 013-11-05, Task 3679.

The final report includes three volumes, Volume 3
being herewith included.

Volume 1 - Spring and Damping Coefficients for
the Tilting-Pad Jounral Bearing.

Volume 2 -

Part 1: Attenuation of Rotor Umbalance Forces
by Flexible Bearing Supports

Part 1II: Unbalance Response of a Uniform Elastic
Rotor Supported in Damped Flexible
Bearings

Volume 3 -

Part I: A General Computer Program for Unbalance
Response of a Rotor in Fluid Film
Journal Bearings

Part II: Experimental Investigation of Hydraulic-
Supports

Mechanical Technology Incorporated was primarily
responsible for the analytical portion of this study, while
Westinghouse Electric Corporation designed and conducted
the experimental test.
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Part I

A General Computer Program

for Unbalance Response of a Rotor
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INTRODUCTION

A rotor supported in fluid film journal bearings is a complex dynamical system
and exhibits a variety of characteristics: critical speeds, instabilities, un-
balance vibrations, etc. In many applications it is a critical member ard any
design procedure requires, as a minimum, the calculation of the critical speeds
of the rotor. Other investigations may include a check on the stability of the
rocor (oil whip, fractional frequency whirl)or calculating the rotor ampliuvude
caused by an external excitation (e.g. shock loading). In the present case the
concern is with the response of the rotor to unbalance forces and to determine

both the whirl amplitudes and the forces transmitted to the foundation.

The fluid film journal bearings play a very important role in the dynamics of
the rotor. They are normally the predominant source of damping such that with-
out this source it would be impossible to run the rotor through any of its
critical speeds. Secondly, the bearing film is flexible and thereby it may lower
the critical speeds drastically (e.g. for the first critical speed the reduction
can be 30 to 40 per cent, or even more). The fluid film flexibility also causes
the bearing to act as a vibration isolator, attenuating the dynamical forces
transmitted to the pedestals. Hence, in any comprehensive rotor response cal-
culation it is necessary to have a method available which treats the dynamical
bearing forces as accurately as possible. It is the purpose of this report ko
present such a calculation method and to describe a computer program for carry-

ing out the numerical computations.

The computer program is very general, It calculates the rotor whirl amplitude
and the force transmitted to the base due to a given rotor unbalance. The rotor
is flexible and may have any arbitrary geometry. Also, there can be splined
couplings in the rotor and several bearings. The bearing pedestals can be
assigned both flexibility and damping. Since the bearing film forces are not
the same in all directions the whirli motion of the rotor is treated as two-
dimensional such that it becomes an orbit around the equilibrium position. The
orbit is elliptical and its dimensions and orientation vary along the length of

the rotor. The computer program calculates the whirl crbits for a number of



points along the rotor and gives also the components of the force transmitted

to the foundations.

The report sets forth the analysis for performing the calculations and describes
the computer program based on the analysis. Detailed instructions for preparing

the computer input and interpretating the output are given.



DISCUSSION

a.

General

The rotor analysis derives in its principle from the Myklestad-Prohl method
(Ref. 1,2,3). However, in its original form the Myklestad-Prohl

method is set up only for .calculating the critical speeds of

flexible rotor in flexible bearings and it treats the rotor motion as a
transverse vibration of a beam. In the present case the motion is treated as
two-dimensional, damping is included in the bearings in addition to stiffness
and the rotor response is calculated at any speed, not just the mode shape

at the critical speeds. Furthermore, the effect of gyroscopic moments is

included.

In general a rotors cross-sectional dimensions and its mass distribution

varies along the length of the rotor. Thus, for calculation purposes it is
convenient to break the rotor up into short sections, each section having

a constant cross-section. Furthermore, when there are many sections the mass
of each section can be divided into two parts and lumped at the end points

of the section. Concentrated masses like wheels, impellers, etc. can be made
to coincide with an end point of a section. In this way the rotor is replaced
by an idealized model consisting of a number of mass points connected by
weightless, flexible bars. The model can be brought as close to the actual
rotor as desired by making the subdivisions smallbut in practice only a

limited number of divisions is needed to obtain a very good accuracy.

Since the bearing film properties to a large extent control the whirl motion
of the rotor, it is necessary to represent the dynamical bearing film forces
as accurately as possible. The method of representation is based on the
assumption that the whirl amplitude. is small compared to the bearing clearance
such that the dynamical forces can be replaced by their gradients around the
steady state journal center position. In this way the dynamical forces be-
come proportional to the whirl amplitude and the corresponding velocity, and
the factors of proportionality are called spring and damping coefficients.

They differ from conventional mechanical spring-dashpot systems by also



containing cross-coupling terms in addition to direct-coupling terms, i.e. the
dyriamical force in a given direction (say the x-direction) is not only pro-
portional to the amplitude and velocity components in that direction but is also
proportional to the amplitude and velocity components in the mutually perpen-
dicular direction (i.e.the y-direction). Hence, in an arbitrary reference
coordinate system with x and y-axis the two dynamical force components can

be expressed by:

Fe = =KX = Gk = Ky = Gy
Fy = KX ~Cpek = Kyyy =G §

where x and y are the amplitude components, x and y are the velocity components,
KXX and Kyy are the direct coupling spring coefficients, Cxx and nyare the
direct-coupling damping coefficients, ny and ny are the cross-coupling spring
coefficients, and ny and ny are the cross-coypling damping coefficients. These
8 coefficients are functions of the bearing Sommerfeld number defined through

the rotor speed, the steady state bearing reaction, the lubricant viscosity and
rhe bearing dimensions (for gas bearings the coefficients are functions of the
Compfessibility number and the bearing eccentricity ratio). Thus, the coeffi-
cients va:y with speed. A method for calculating the coefficients is given in
Refs. 4 and 9 and values of the coefficients for several bearing types may be

found in Refs. 4,5,6,7 and 8.

Frequently the pedestals, on which the bearings are mounted, are as flexible as
the bearing film. 1In such cases the pedestal stiffness must be included in the
calculations. For completeness the analysis allows for both stiffness, damping
and inertia in the pedestals. Furthermore, as the rotor bends under the in-
fluence of the unbalance forces the journals become cocked in their bearings.
The fluid film resist the tilting and this can be expressed by a set of 8 spring
and damping coefficients in analogy to the previously discussed coefficients. The
analysis includes this effect, both in the bearings and in the pedestals. The
resistance to tilt normally affects the rotor motion only at speeds above the
second or third critical speed bit if the pedestals are made soft for alignment
purposes resonance conditions may exist which can only be explored if the effect

of tilt is included.



Occasionally the rotor is not a single member but consist of several rotors
connected by splined couplings (e.g. a turbine-generator set connected by

a splined coupling). The analysis allows for including splined couplings
anywhere in the rotor and assumes that no bending moment is transfered

through the coupling.

The whirling motion of the rotor is generated by unbalances built into the
rotor. In general the unbalance varies in magnitude and circumferential
location along the rotor such that under speed the unbala ce fnrces may
bend the rotor into complicated shapes (e.g. resembling a 'cork-screw').

The bend rotor whirls around its steady state position (i.e. the position
the rotor would occupy if there were no unbalance forces)with each point

of the rotor axis describing an elliptical path. The dimensions and orient-

ation of the ellipse varies along the length of the rotor.

If the rotor runs at high speed and has large discs (e.g. turbine wheels, etc)
mounted on the shaft the gyroscopic moment becomes important, especially if a
wheel is overhung at one end of the rotor. The gyroscopic moment is pro-
portional to the mass-moment of inertia of the wheel, the square of the speed
and the deflection angle of the rotor. If the rotor motion is considered as

a transverse vibration of a beam (i.e. the whirl orbit is a straight line)

the gyroscopic moment tends to "soften' the rotor and lower the critical speed.
On the other hand, if the bearing spring and damping coefficients are the same
in the vertical and the horizontal direction the rotor whirl orbit becomes a
circle and the gyroscopic moment stiffems .the rotor. Actually, the whirl
orbit is elliptical, i.e. somewhere between a straight line and a circle, and
the effect of the gyroscopic moment can only be assessed by performing the
complete rotor analysis. It is a non-linear effect since it depends on the
dimensions of the elliptical whirl orbit. In the present analysis the gyro-

scopic moment is taken intc account and is calculated by an iteration procedure.

Special Considerations in Performing the Numerical Calculations

The greatest difficulty encountered in performing the numericdal calculations



is the magnitude of the numbers and the loss of significant figures. These
difficulties become pronounced when: a) there is an excessive number of
rotor mass stations, b) the rotor is very stiff and, c) the bearings are
very stiff. There is no universal remedy for the problem but if trouble
arises two possibilities may be tried: a) reduce the number of rotor

stations to the essential minimum and, b) apply a scale factor,

Let the scale factor be & . Then:
multiply the speed by &
multiply (EI) by o (e.g. multiply E by o*)
multiply the bearing spring and damping coefficients by dl
. 2
i.e. 1 ‘ .
(i.e. multiply Kxx’wcxx’Mxx’mex etc. by o )

multiply the pedestal stiffness by o® and the pedestal
damping coefficients by

(i.e. multiply %y and X, by o, éyand 6 by &« )

leave the rotor masses, the rotor length, the pedestal
masses and the unbalance unchanged.

The the numerical results will give the amplitude unchanged whereas the
bending moment and the transmitted force must be divided by d2 to obtain

the actual wvalues.

. Analysis and Dimensionless Equations

Referring to the sign convention given in Fig. 2 and considering first a con-

tinuous rotor the three basic equations for determining the rotor motion are:

A4 2
(1-a) TForce balance for a shaft increment, dZ : f; =?Aw (x+e)

2L o N X

(2-a) Moment balance for a shaft increment,dZ : é‘g =V+w (‘f‘T)gi
2

-7 dx

(3-a) Shaft deflection . M=ET jn

where: - amplitude in vertical direction, inch

- amplitude in horizontal directien, inch

X
Z - coordinate along the rotor length, inch
€ - eccentricity between mass center and shaft center, inch

. . 2
- cross-sectional area of shaft, in



I- cross-section moment of inertia, in4
E- Youngs modulus, 1bs/in2
¢ - mass density, 1bs.sec?/in”
({P"LI)' mass moment of inertia per unit length, which is
effective in gyroscopic moment, 1bs.sec2
W - angular speed, radians/sec
M- bending moment, 1lbs.in

V - shear force, lbs.

These three equations may be combined to give the familiar 4th-order

differential equation governing the unbalance vibrations of a rotor:
2 2
d_( LX_) - 24 [/ - d_&]
(4-a) dz* El dz2] ~ 9Aw‘(x+e) +W gz [(1',-11.) dz
(see Ref. 3, page 330)

For a circular whirl orbit:
For a straight line orbit:

For an elliptical whirl orbit, see Eq.(28) and (29) in this report.

At the bearings there is an abrupt change in the shear force and the bending

moment due to the bearing reactions. Let the bearing be at Z =2¢. Then:

(5-a) Vz.z: "Vzu; = —(Kn +iwGo)x —(K,,.’+ iw(,,,)t,
(6-a) Mm: "Mm: = (M,,, +iw Dx,)g"(M,,*'(wD,,,)ﬁ

where K , C , M ,D etc. are the bearing spring and damping coefficients.
XX~ XX XX XX

Actually, the effect of the pedestal should be included in the above equaticns
as shown in Eq. (12) and (13) in the analysis.



The numerical method uses Egqs. (l-a), (2-a) and (3-a) by rewriting them into

finite difference form:

AV= wz(gAAz)-(x-m)
aAM= Viaz + o [(i-i,) az] (%)

(@ "
X
() - [ =3 dz

L ET
2442 2182

dx M
DX = z /8L + ET dZdZ
z 2

Together with Eqs. (5-a) and (6-a) these equations form a set of recurrence
relationships which can be solved step by step, starting from vne end of the

rotor until reaching the other end. The details are given later.

Occasionally it is desired to perform a dimensionless analysis. The two

governing quantities are:

2 _ (EI), _ Kk

(7-a) “n l M'r MT
ET)
(S'a) kr = (lf)

where:
(EI),- reference value of EI, 1bs.in2
£ - rotor span between bearings, inch
MT’ ggAdz, total rotor mass, lbs.secz/in
K, - Yotor stiffness, lbs/in

W,~ equal to or proportional to a critical rotor speed, radians/sec

For a uniform shaft (EI = constant, A = Constant):

2
e me e ()
() 4 ITMT ISMT




where N designates the order of the critical speed. Thus, for the first

mode: h=| i.e.,

(E1),= "2,‘ EI=2.4674-ET (Uniform shaft, first mode)

However, it is not necessary that W, be a critical speed but Eq.(7-a) must

be satisfied.

The dimensionless parameters become:

X's X/e,

2= z/¢
ED'= E1/(€T),

V= \, k

M' = M/e.k

K= Ky /. ( 2 )(Gk) (%)
(w( ) W fK, = (c‘?l/?)(cw. (Q“Q')

= M fi = (V&N (S)

(QM' = IfA/Mr
((miy) = (6-5)/ M

where:
€ - reference value for the rotor mass eccentricity, inch

(,- reference value for the radial bearing clearance, inch
C - actual radial bearing clearance, inch

\A/o- reference value for the bearing reaction, 1lbs.

W - actual bearing reaction, 1lbs.

L

- bearing length, inch

The dimensionless bearing coefficients are given the form above since the values
obtained from lubrication theory are Ckx,/W,Can(/W, etc, Normally, a di-
mensionless analysis is only performed for a simple system where all bearings
are identical, i.e. C=C° and W=‘W° . In that case the basic dimensionless
parameters ave:

speed ratio: (QQ)..)

dimen ionless ro.or stiffness: K Ck;, /W

dimensionless bearing coefficients: Cny/W Cw(;x/W a’) (CMW/WL ,ete.



]
Thus, to perform a dimensionless calculation for a given value of k,. use as
input to the computer program:

speed = (55.) /- 10471976

‘ mg
Mass at station (= 3.86069-105(m=station weight, lbs;
m n=number of stations)
L-1p); 3.86069-10°
(1 L

Cross-sectional moment of inertia for section (-({+l): IOOO'I/Io

(Ip‘IT)at‘ station t =

Young modulus = 1

Length of section (—=({+l)= L/

Bearing spring coefficient = ?‘: (c‘%n)
Bearing damping coefficients "%; (c—‘\*:-v-(-"")
Unbalance such that: .f Wy Gz.in) = 61T 'i'u.,(oz.n‘u) = 61717.1

Then the computer output will give:

amplitude = é, and ?

bending moment = M = M/e.;k,,e = M/%’W! k,f

transmitted force = (actual force)/e,K, = (actual force)/%W‘Kr'



ANALYSIS AND DESCRIPTION OF THE COMPUTER PROGRAM

The remaining part of the report describes the basic analysis and gives

the detailed instructions for using the coﬁputer program:

PNOOl1l: "Unbalance Response of a Rotor in Fluid Film:hournal Bearings' for
IBM 704 digital computer. This program calculates the rotor deflect-

ion and bending moment, the pedestal deflection and the transmitted

force resulting from a specified rotor unbalance, It differs from
conventional programs by taking into account the variation of support

flexibility and damping along the whirl path of the rotor.

The supports for the rotor consist of a fluid film bearing on a ped-
estal, both members possessing flexibility and damping for translatory
and rotational motion. The flexibility and damping are linear in dis-
placement and velocity respectively, the proportionality factors den-
oted as spring and damping coefficients. The fluid film is represent-
ed by 4 spring coefficients and 4 damping coefficients for translatory
motion and similarly for rotational motion, thus allowing for coupling
between the motion in two mutually perpendicular directions., The
pedestal has no such coupling and is represented by 2 spring and 2
damping coefficients for both translatory and rotational motion with
corresponding pedestal mass and mass moment of inertia, Hence, each
point of the rotor will whirl in an elliptic path around its steady

state position.

In addition, the program includes the effect of gyroscopic moment and

provides for couplings in the rotor.

THEORETICAL ANALYSIS

The analysis is an extension of the Myklestad-Prohl method, see Ref. 1,
2 and 3., The rotor, which is actually a continuous system with an in-
finite number of degrees of freedom, is replacéd by a finite number of
lumped masses connected by weightless springs. The computer program

calculates the vibrational response of this equivalent system exactly,

-11-

the



Thus the accuracy of the results depends only on how closely the

idealized system resembles the actual rotor,
Starting from the left end of the rotor, the program calculates step

by step the bending moment, shear force, slope and deflection along

the rotor. Neglecting the shear force contribution to the deflection,

we get from Fig. 1:

(1) /Vlnn=/\4'n+Ln Vi

(2) 9,1,” = Qn + Qnp M:u +anﬂ
O X = Xyt Ly On+ CaMn +dnVn

where:

Ln
(4 An =[
0

%% - Ln for EI constant in 0 < £ < L
(5) £7ﬂ = | fﬁiﬁ—:: é?%:

, EL 2
(6) C)n = /_,‘ an—bn=é.l:E_ﬂ;.: " "

D g = L, bn-/‘"ﬁﬁhg.f_ : :

The program assumes EI constant between mass points. At the mass
points, the forces acting on the rotor are introduced. Four contrib-
utions exist: (1) inertia force, (2) unbalance forces, (3) bearing
reaction, and (4) gyroscopic moment, In general, not all 4 contrib-

utions apply to each mass point,

Inertia force. The rotor performs harmonic vibrations at the same

frequency as the rotational speed. Thus the inertia force is:

-12-



(8) -m = mwx
Jt?

(9) - alzi - 2y

mo)éz 'mwaf

Unbalance forces. To allow for change in circumferential position of

the unbalance along the rotor, the unbalance is given two components
Uy and(lg . This gives rise to an X and y component of the unbalance

force:

(10) (Vx,n—\/x,ml)unb = wZUX cos wt -wzu., stin wt
(11) (\/q,n— \/‘j,m\l)wﬂm = u)zuv coswt + wiix sinwt

Bearing reaction. The bearing supports have flexibility and damping

for both translatory and rotational motion of the rotor. Since the
equations for the two types of motion are analogous, only the equat-

ions for translatory motion will be derived.

The bearing support is shown in Fig, 3. It consists of a pedestal
with mass (Mox)Ma”), supported by springs (“":’RS) and dashpots
(6},63). There is no coupling between the X and g direction, i.e,
no transfer impedance, nor between the translatory and rotational
motion. The pedestal supports the bearing fluid film which is rep-
resented by 4 springs and 4 damping coefficients. If the relative
motion between the journal center and the bearing housing is denoted

[ !
(X, g ), then the bearing reaction becomes:

(er\ VX - '>bCJV‘IY\$ KXX CXXX K’(‘g g Cx\j y

(12)
OV Vi b= = Kok =CyeX "= Ky § = Cy §'

Setting: | . .
X'=Xc coswt +xk sinwt

‘J' = g’c Cos Wt + ys' sin wt

we get from Newton's second law for the pedestal mass:



-14-

(Kt om0 Mox )X+ 00 (Cox 6N +Kag Y + Wyt = (Rt Mon)Xe t Gk

(13)

- C{J(CXX + Gx)xlc t (Kxx ‘WK:"')ZMox)X,S - a)C'xq(fc' ¥ I{xg \fls = - w0x Xc+(&-w2Mox\>X5

KL’XXCl + waX‘5+(K‘1¢1+'&!1‘w2M0wc‘ +w(Cq1+Gla) ‘i; = (h&oa-szaa)(Jc H/.)Gg(és

- 0 yeXe s 00 Cy 6 Y (Ko Mg )= 8y o (e Mg D

Solving the equations we obtain:

(14)

where:

(15)

(Vxn"\/x)n-l)bear"“j= ('Ava.‘XXc -A VBXXS ‘AVCX“-IC —A\/dx 35) cos wt
+ (A Vngc-'AVu)(s'r Adelﬂc" AchHs ) SW\UJt

(Vlgn'vg ,V\-i)m;,," ('AVC%XC'AquXs‘AVa"‘jL - L\VL,% "js) coswt

+( s quXc"Achxs +AV|,.;’ Y —4 \/ag LU!D sinwt

AVox = Kuf +w Cq +Kxgg+ w Cxyr

A Ypx =“ny.3 +WJ Cxe’Kxca, Y +U)Cx«1%

AVex = Kxxh + WGl tKey S + wawéJc

AVdx ==K L +wClach ~Kyt +wlxyS

i

A\/aué K\axk“'WquL‘qu\iSi’qu\,f

U

AVC«* = K\,x$ +w qu 3 + V‘{\{%"’w C\ﬁr
A Vd.1 '-'-"'Ku\xcj tw wa‘?“i(.&ﬁf‘ +w Csﬁg,



and:

oo GEFFD
COFir6’
p= G4+ FH

FZ+6Z

F= H—Kx30+wa1R
He = KeyS + 0 CoyT

_ &#,a»*w(',!:b
Q“ 0.14'5

ad+ be
§= A5

A= K + Ry -w*Mx
D= Ry ~w*Mox

a =K77+)QW-WZM07

_ GD-FE
7 Fi+ 6°
[ = Gi-FJ
FZ+ 4%

6 =B-KyR-wGyQ
J =Ky T-wlayS
R= Hlul-fyb
B= w (Cux +6x)

E = w0x

b‘w(fw‘*@)

d= YQ.j-u)zMoy e = way
g =-@f-Rg r=-G@q+Kkf
s = S-Qh-RA4 t=-T-Qi+Rh

The equations for rotational motion are analogous to eq. (l4)except for

a sign reversal (sign convention, see Fig. 2):

(Mx/n‘Mxn)w,',g= (4 Max6. + 4 MpxBs + BMcx @, + 4 Mox Qs > coswt

+ ‘('ﬂbeec +tAMaxOg ~AMax @, + 2 Mcx ¢s) sinwt
(16)

(MynMin) = (MegBe +4MayBs +6Mayd, + 8 May 9 ) coswt

wri»\'g

+ (-aMy Oc + A My Bs -4 Mg @t & May s ) sinwt



where the coefficients AMa.y,Abe etc. are computed from eq. (15)
as aMax=4aVax s AMyx = AVix etc, by replacing the translatory
spring and damping coefficients by the corresponding rotational co-

efficients.

Since the fluid film coefficients are functions of speed, directly
through the Sommerfeld number and indirectly through the decrease of
eccentricity ratio with increasing speed, the computer program prov-

ides for expressing the coefficients as a function of speed, e.g.

[18) Kix = Kxx,o + Kugt cw + Kxx,2 * w?

and similarly for the other coefficients. ) is the rotor speed in

radians/sec.

Gyroscopic Moment. The gyroscopic moment derives from the change of

the angular momentum vector of the rotating rotor mass as it whirls
in an elliptical path around the steady state position of the rotor.

For two special cases the gyroscopic moment is known:

circular whirl path: Méqr = (IP‘IT)wze
(19)

straight line (transverse vibrations): M&qr = —IT w29

where & is the slope of the rotor.deflection and Ip and LT are the
polar and transverse mass moment of inertia. For an elliptical path
the gyroscopic moment is no longer linear with respect to the slope of
the rotor, indicating that an elliptical path is actually not possible,
However, in general the effect of the gyroscopic moment is not too

big and for the present analysis an elliptical path will be assumed.

The coordinate system is shown in Fig. &4, where O is the steady state
/ .
shaft center position and O is the whirling shaft center. The moving

coordinate system (f."q,;) is defined by its unit vectors:



O1

6/{6%p* P/’/ﬁ‘ﬂp‘- 2T L e )
§ ° m i '\//+67+<P‘ * fivorigr) " Je‘upz r\/@‘“/” ¥

(O
S

(20)

- b ¢ _
e;=< Vi+82+ ¢t » Vit p2 ﬁﬁ_} = <0,Cp,,)

The angular velocity vector becomes:

—~ PR, -6 66+9d _(60-69)
(21) ‘*):(w?ﬂw’l’w;):(enexses‘eheg“n>=(%%T—f,%g%i;(ﬁwz>

The moment needed to sustain the motion is given by Eulers equations:

My = L + (Zp-I;)wywy
(22) Mq = I-,—U.J,) + (Ip‘f-r)wgwg
MB"—’IP é;);

where I denotes mass moment of inertia and I§=Ir7r,,=l} and l'; =Ip .

Let us first assume that (X,\j) corresponds to the directions of the
major and minor axis in the elliptical variation of the rotor slope.

Therrs.
6, = £ cos (wt+a)

(23)
# = G sin (wWtta)

Combining eq. (20), (21) and (22):

56
~Me = - I ¢ + I, w? Ee[zfe(e, )t ereg J

- % 5 : -4 T 0
My=-Irw'6,* I, szé[zEG (9-’;42")‘ ér?‘To‘ }

which clearly shows that the gyroscopic moment is not linear with

(24 )

respect to the rotor slope. However, -only the first harmonic can do



work on the rotor. Hence a Fourier analysis will be performed. The

following integrals apply:

o210
sinx cosx dx  _ 0
E2cos*x +G*sin®x

SinX_cosX_dx
(E%osix +G%sinx)*

21
sinx adx - 21
E *cosix +G*sinix G(E+6)
© o
_sin®xdx . _fI_
(E*cosix+G %sinx)* E4°
(/] Zﬁ
dx . 2 T
E *cos*x + & sinkx Fa
rYs
dx _ le%s")
(E 2 ost+lsiny )t £26°
0

Then the first harmonic becomes:

E
“Mx = <(§+5 I,-I,) w*¢,
(24)

G
Mlj = ‘Ez._'_—é IP’IT) wZQ:

In the limit, eqs. (24) agree with eqs. (19).
Eqs. (24) must be transformed back to the actual (9,‘?)-coordinate

system. Setting

B = Q. coswt + s sinwt
(25)
9= Pecoswt + Ps sin wt



describing an elliptical variation of slope, we get:

2} \/2' (6565 v@iql) 2 \[L(81+67 + 02+ ) (0.4-6:0)
5;2+w9f -4%2-4%1
V(02 +62- 0247+ 4 (604645

2(6.4 +65¢;)
\/(9524-9,2- 4’:' (Ps’) *+4(6.9. + 654, )z

(26)
cos Zﬁ =

sinzp =

where ﬁ is the angle from the position X-axis to the major axis E, pos-

ition in the same direction as W . Then:
8, = O cosB +Psing
¢, =-4 sinp+4/7w.s'6

(27)

Substituting éq. (26)-(27) into eqs. (24) gives:

(28) My = ( Min - Men g W[28Mey T~ 6. T, | coswot + w20 Ma,T7 66L] sinwt
B0 My = (Myn M)y = WMy Q] cosut 1 [paMacTrg, L] sivt
where

(&th{?s)(@c‘{’s‘% ‘pc,)
(Oc+ds)* + (6s- ‘Pc)z

(8s -~ G )N6:Ps - G5z )
(6c+4s)* + (95'4)(.) 2

(30) AMoy =

(3D s May =

Since eq. (28) and eq. (29) are not linear, an iterative method is
used. For each rotor speed, the program performs a number of iterat-
ions. The first iteration is done without gyroscopic moment. After
the first iteration, the gyroscopic moment is calculated from eq. (28)-
(29) and these values are used in the second iteration and so on. The
calculation has converged when the relative change in rotor amplitude

and slope between two iterations is smaller than a specified limit.



EQUAT IONS FOR ROTOR CALCULATION

The bending moment, the shear force, the slope and the deflection are

expressed by:

My = My, coswt + Mxs sinwt

Ve = Ve coswt + Vs sinwt

"

e

Oc cos wt+ Os sinwt
X = Xecoswt+ Xe Sinwt
and sdimilarly for thelj-direction. Then eq. (1), (2), (3), (8), (9),

(10), (11), (14), (16), (17), and (29) may be comhined to give the

equations used in the rotor calculation (see Fig. 2):

1
Mycn= Mxen t8MaxnBen+ 4 MixnBsn+ aMcxn@en +4Maxy Psn + (Mgccn’ chn)aym
M;(s,\ = Mysn = & MioxnBent AMm\em-Aden‘Pc»\*AMcxn(PsM’ (M;sn-stn\)afro
M:jc.n = M.«M +4 Meyn Bcn+8 Md;‘ney\ 1A Maqn Qo+ £Myyw Lpgn+(Ml{lcv1 - Mgs»(,"m

| I
ijsn = qun —4 qun Ben +4 MCqV\ Bsu=a MBYMLPCM+AMO‘1“‘PSW+<M‘1‘S V\’Mﬁsn)m,m

chn = ch\n-\"'[M,\w;’AVaxV\] Xew™ 4 VbXAXSV\‘AVC)M‘gw _AVd)M\‘}sn + UJZ Uxu

(32) Vrsn = Vst ¥ 8Vioxn Xen t fwlnuz—A Vcwn:) Xon *4 Vo Yen = 4Vexmysn = wt uym
v‘,",\ = Vyourr = Vg Xew = AVayuXsn + [vn.‘u)z-A V.,,n_] Yeu = 4 Viyn Yon +w ’u?“
Visn = Vasnri + BVagn Xew - 4 Veun Xon +8Vitaen +[ma - aVayn] Yyn +0* Uan
MuceT Muen + LaVien

{
Mysm™ Mxsn + L Vysn

- 20



Myeni™ M fw\ t LnVien
Myse™ Mugsn + LnViso

Ocuri™ Ben *+ G Myea + on Ve

Bsmt = Osn t G Mivsn + b \Vysn
Cenn1= You + Goa M \1‘cn + baVien

Ps = Pyt G M:ﬁ“ + bnVysa

Xener = Xeu LnBen HbnMuen + dyVxen
Xswer = XsntLuGsn +lou Musn +du Visn

(jc,m\" chm +Ln ‘ﬁh + LKM:"U« +0'n chw
Ysun= ('fsu tha ﬁpw-f b Mt;s»\ “’daVu‘sv\

In the above equations a,,, bn, dn are given by eq. (&), (5) and (7),
SMaxn, eMpmn --------, dMdyn and aVown, AVexa - -—--- 4Vdyn by eqs. (15) and

(Mxcn Mxen )a.l,;—o“““_ (Mlﬁ;‘ Mysn )6‘:1” by eq. (28)-(29),

Boundary Conditions. The rotor is assumed to have free ends. No loss

generality occurs by this condition since it may be changed by letting
the end points have bearing support. A proper choice of support coef-

ficients will then allow for any type of end conditions,

For a rotor with free ends the bending moment and the shear force are

zero at the end:
(33) Mya = Musi = chu = M‘?“= Weer = Visi = Vyar = Wysi = 0

(34) Myer = Mysr = Mq’cr - M«{sf = Vyer = Visr = Vyor = Viysr = 0

in



Starting from the left end of the rotor (see Fig. 2), eq. (33) is used,
However, the slope and the deflection are unknown. Using the super-
positien principle, each unknown is applied separately. A summation
gives the combined effect. Ten calculations are performed, using eqs.

(32),
1. Ber = 1| 95;=¢c|=%; =X«:;'=X:l=‘*[¢;=‘15|=Uxu=uqv\=0
2. Bs =1 Bei = Fi =@y =X =Xsi = Yer =Ys, =Um=Uu=0

3. Q.
&. s

[ Ger =0q, =Fs =Xa=¥s, =Y, =Yg = Unillyu=0
I 96\ =98l ="€¢| =X¢|=XS| =L{,_,=L‘5| =um=dq»\=0

5. Xey= | e :9$| :(‘PL\ :"PSI:)(sl =Y =Yg, :Wt\:u‘w:o
6. Xo = | Be1=6si =, =‘Pn =Xu =Y =Ys =W :uqnzo
7. “'m: ! . 6(-1 =9s|:‘&t:‘Ql:Xu=Xs|‘—"‘ls.=b(x,\:‘u%:0

8. ",SI‘: ‘ 6“ =0ﬂ = CP‘] =(pj| =)(¢|=)(s' =q¢|=u)(u:u;1v\:0

9. Uyn = Uxn ULM =Uyn be =4, =¢c| :LP(N =Xey :Xsa:qu =({s( =0
10. Gyroscopic moment applied 6.\ =6, =('P¢I=((Sl=XCl:Xsl:qu'_‘(-’n =Upm=Uy 70

For each calculation eqs. (32) are used to calculate the bending mom-
ent, the shear force, the slope and the deflection along the rotor. At

the right rotor end, stationr, eq. (34) must be satisfied, i.e.

(_ ! 8 J [}
Mxéq/ Micrz-—~—-- Mur, s ) 9:.1 (—anr, 9 =NMrer :aN
t [ t /
Mxsrt Musyz---—-- Mysns 65 —Must § = Msv, 10
! 1 / ]
Mq’of/ M‘,'a,z— e Mqlu',l G -Ma,tw,ﬁ 'M:{u/, jo
(35) Myst Mysqa--—---- Mysrs ) ¢ | — ¢ ~Muysv, 4 - pMysvi0 \
Vrer Vnr,;_ ------ Vrer, 8 Xer —Vyer, 4 = Vye v,10
Wrer;i Yesr p—=mmmm = Vsr, 8 Ysi - Vg(ff, g - \/)(S vl
Vyer, V»,u;q, ------- Vyer,s | Yey "Vu'w' 4 -Vy w1
L Vgsry Vs === ---- Vysr; ) k‘fﬂ ) k“Vqsf. 4 -Vysv, "’J
Eqs. (35) are then solved for &n,@sn ----- Ljsp, and the actual values of

bending moment, shear force etc, along th